A cryptic TOG domain with a distinct architecture underlies CLASP-dependent bipolar spindle formation.
نویسندگان
چکیده
CLASP is a key regulator of microtubule (MT) dynamics and bipolar mitotic spindle structure with CLASP mutants displaying a distinctive monopolar spindle phenotype. It has been postulated that cryptic TOG domains underlie CLASP’s ability to regulate MT dynamics. Here, we report the crystal structure of a cryptic TOG domain (TOG2) from human CLASP1, demonstrating the presence of a TOG array in the CLASP family. Strikingly, CLASP1 TOG2 exhibits a convex architecture across the tubulin-binding surface that contrasts with the flat tubulin-binding surface of XMAP215 family TOG domains. Mutations in key conserved TOG2 determinants abrogate the ability of CLASP mutants to rescue bipolar spindle formation in Drosophila cells depleted of endogenous CLASP. These findings highlight the common mechanistic use of TOG domains in XMAP215 and CLASP families to regulate MT dynamics and suggest that differential TOG domain architecture may confer distinct functions to these critical cytoskeletal regulators.
منابع مشابه
The role of TOG domains in microtubule plus end dynamics.
The XMAP215 (Xenopus microtubule-associated protein 215) and CLASP [CLIP-170 (cytoskeletal linker protein 170) associated protein] microtubule plus end tracking families play central roles in the regulation of interphase microtubule dynamics and the proper formation of mitotic spindle architecture and flux. XMAP215 members comprise N-terminally-arrayed hexa-HEAT (huntingtin, elongation factor 3...
متن کاملTOG–tubulin binding specificity promotes microtubule dynamics and mitotic spindle formation
XMAP215, CLASP, and Crescerin use arrayed tubulin-binding tumor overexpressed gene (TOG) domains to modulate microtubule dynamics. We hypothesized that TOGs have distinct architectures and tubulin-binding properties that underlie each family's ability to promote microtubule polymerization or pause. As a model, we investigated the pentameric TOG array of a Drosophila melanogaster XMAP215 member,...
متن کاملCryptic no longer: arrays of CLASP1 TOG domains.
CLASP proteins play crucial roles in regulating microtubules. In this issue of Structure, Leano and colleagues show that an essential and previously cryptic domain of CLASP is a TOG domain with unusual features that might explain its unique functions.
متن کاملCsi1p recruits alp7p/TACC to the spindle pole bodies for bipolar spindle formation
Accurate chromosome segregation requires timely bipolar spindle formation during mitosis. The transforming acidic coiled-coil (TACC) family proteins and the ch-TOG family proteins are key players in bipolar spindle formation. They form a complex to stabilize spindle microtubules, mainly dependent on their localization to the centrosome (the spindle pole body [SPB] in yeast). The molecular mecha...
متن کاملInterdependency of fission yeast Alp14/TOG and coiled coil protein Alp7 in microtubule localization and bipolar spindle formation.
The Dis1/TOG family plays a pivotal role in microtubule organization. In fission yeast, Alp14 and Dis1 share an essential function in bipolar spindle formation. Here, we characterize Alp7, a novel coiled-coil protein that is required for organization of bipolar spindles. Both Alp7 and Alp14 colocalize to the spindle pole body (SPB) and mitotic spindles. Alp14 localization to these sites is full...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Structure
دوره 21 6 شماره
صفحات -
تاریخ انتشار 2013